58.3 F
Denver
Wednesday, October 23, 2019
  • News

New lithium-ion battery design that’s 2,000 times more powerful, recharges 1,000 times faster

Must Read

Compact Swytch Kit converts any bike to an e-bike for sustainable transport

Swytch switched. Following up on its successful 2017 crowd-funded e-bike conversion kit launch, London-based Swytch Technology is at it again. In designing a new model that is 50% lighter and 70% smaller than the original, CTO Dmitro Khroma says the team has created the “smallest and lightest e-Bike system that is possible with today’s technology.”…

RealTime Robotics scores $11.7M Series A to help robots avoid collisions

One of the major challenges facing engineers as they develop more agile robots is helping them move through space while avoiding collisions, especially in a dynamic environment. RealTime Robotics, a Boston-based startup announced an $11.7 million Series A inv…

Interior design startup Havenly raises $32 million

Interior design platform Havenly is raising $32 million in new funding to create its first private label brand as the startup aims to integrate its own products into its design recommendation engine. The Denver-startup is an online interior design consultanc…
Ethelyn Bryehttp://cyanosaur.com
Ethelyn Brye is an award-winning author and blogger. Growing up in Switzerland and influenced by renowned Swiss design and a lot of fresh mountain air, she attended and completed design studies in Geneva. Post graduation she moved to Washington State to work for a design firm, but her love of writing brought her to Cyanosaur. She's highly interested in strategy rpgs, mountain climbing, board games with friends and skiing. She lives in Seattle, Washington, with her lovely cat Armstrong.

Researchers at the University of Illinois at Urbana-Champaign have developed a new lithium-ion battery technology that is 2,000 times more powerful than comparable batteries. According to the researchers, this is not simply an evolutionary step in battery tech, “It’s a new enabling technology… it breaks the normal paradigms of energy sources. It’s allowing us to do different, new things.”

Currently, energy storage is all about trade-offs. You can have lots of power (watts), or lots of energy (watt-hours), but you can’t generally have both. Supercapacitors can release a massive amount of power, but only for a few seconds; fuel cells can store a vast amount of energy, but are limited in their peak power output. This a problem because most modern applications of bleeding-edge tech — smartphones, wearable computers, electric vehicles — require large amounts of power and energy. Lithium-ion batteries are currently the best solution for high-power-and-energy applications, but even the best li-ion battery designs demand that industrial designers and electronic engineers make serious trade-offs when creating a new device.

Which brings us neatly onto the University of Illinois’ battery, which has a higher power density than a supercapacitor, and yet comparable energy density to current nickel-zinc and lithium-ion batteries. According to the university’s press release, this new battery could allow for wireless devices to transmit their signals 30 times farther — or, perhaps more usefully, be equipped with a battery that’s 30 times smaller. If that wasn’t enough, this new battery is rechargeable – and can be charged 1,000 times faster than conventional li-ion batteries. In short, this is a dream battery.

ncomms2747-f1-640x507

These huge advances stem from a brand new cathode and anode structure, pioneered by the University of Illinois researchers. In essence, a standard li-ion battery normally has a solid, two-dimensional anode made of graphite and a cathode made of a lithium salt. The new Illinois battery, on the other hand, has a porous, three-dimensional anode and cathode. To create this new electrode structure, the researchers build up a structure of polystyrene (Styrofoam) on a glass substrate, electrodeposit nickel onto the polystyrene, and then electrodeposit nickel-tin onto the anode and manganese dioxide onto the cathode. The diagram above does a good job of explaining the process.

The end result is that these porous electrodes have a massive surface area, allowing for more chemical reactions to take place in a given space, ultimately providing a massive boost to discharge speed (power output) and charging. So far, the researchers have used this tech to create a button-sized microbattery, and you can see in the graph below how well their battery compares to a conventional Sony CR1620 button cell. The energy density is slightly lower, but the power density is 2,000 times greater. On the opposite end of the bleeding-edge spectrum — increased energy density, but lower power density — then IBM’s lithium-air battery currently leads the pack.

ncomms2747-f3-640x516

In real-world use, this tech will probably be used to equip consumer devices with batteries that are much smaller and lighter — imagine a smartphone with a battery the thickness of a credit card, which can be recharged in a few seconds. There will also be plenty of applications outside the consumer space, in high-powered settings such as lasers and medical devices, and other areas that normally use supercapacitors, such as Formula 1 cars and fast-recharge power tools. For this to occur, though, the University of Illinois will first have to prove that their technology scales to larger battery sizes, and that the production process isn’t prohibitively expensive for commercial production. Here’s hoping.

- Advertisement -

1 COMMENT

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisement -

Latest News

Compact Swytch Kit converts any bike to an e-bike for sustainable transport

Swytch switched. Following up on its successful 2017 crowd-funded e-bike conversion kit launch, London-based Swytch Technology is at it again. In designing a new model that is 50% lighter and 70% smaller than the original, CTO Dmitro Khroma says the team has created the “smallest and lightest e-Bike system that is possible with today’s technology.”…

RealTime Robotics scores $11.7M Series A to help robots avoid collisions

One of the major challenges facing engineers as they develop more agile robots is helping them move through space while avoiding collisions, especially in a dynamic environment. RealTime Robotics, a Boston-based startup announced an $11.7 million Series A inv…

Interior design startup Havenly raises $32 million

Interior design platform Havenly is raising $32 million in new funding to create its first private label brand as the startup aims to integrate its own products into its design recommendation engine. The Denver-startup is an online interior design consultanc…

Startup headed by ex-Apple engineer aims to eliminate smartphone buttons

(Reuters) - Sentons, a startup led by chip industry veterans, on Thursday began marketing technology that aims to do away with gadget buttons and said it is working with two smartphone makers in addition to an existing contract with Asus Computer Inc (2357.TW). Jess Lee, Chief Executive Officer of technology startup Sentons Inc, demonstrates the…

Apple Called Out for Sending Data to Tencent

234K Want to watch this again later? Sign in to add this video to a playlist. Sign in Like this video? Sign in to make your opinion count. Sign in Don't like this video? Sign in to make your opinion count. Sign in Published on Oct 15, 2019Oct.15 -- Apple Inc. came under fire on Monday…
- Advertisement -

More Articles Like This

- Advertisement -